664 research outputs found

    Majorana modes and p-wave superfluids for fermionic atoms in optical lattices.

    Get PDF
    The quest for realization of non-Abelian phases of matter, driven by their possible use in fault-tolerant topological quantum computing, has been spearheaded by recent developments in p-wave superconductors. The chiral p(x)+ip(y)-wave superconductor in two-dimensions exhibiting Majorana modes provides the simplest phase supporting non-Abelian quasiparticles and can be seen as the blueprint of fractional topological order. Alternatively, Kitaev's Majorana wire has emerged as an ideal toy model to understand Majorana modes. Here we present a way to make the transition from Kitaev's Majorana wires to two-dimensional p-wave superconductors in a system with cold atomic gases in an optical lattice. The main idea is based on an approach to generate p-wave interactions by coupling orbital degrees of freedom with strong s-wave interactions. We demonstrate how this design can induce Majorana modes at edge dislocations in the optical lattice, and we provide an experimentally feasible protocol for the observation of the non-Abelian statistics.We acknowledge support by the Center for Integrated Quantum Science and Technology (IQST) and the Deutsche Forschungsgemeinschaft (DFG) within SFB TRR 21, the Leverhulme Trust (ECF-2011-565), the Newton Trust of the University of Cambridge, the Royal Society (UF120157), SFB FoQus (FWF Project No. F4006-N16), the ERC Synergy Grant UQUAM, SIQS, and Swiss National Science Foundation. GM, SH, CK, and HB thank the Institut d’Etudes Scientifiques Cargèse and CECAM for their hospitality.This is the accepted manuscript of an article published in Nature Communications [A Bühler, N Lang, CV Kraus, G Möller, SD Huber, HP Büchler Nature Communications 5:4504 doi: 10.1038/ncomms5504 (2014)]

    Rapid Bacteria Detection from Patients' Blood Bypassing Classical Bacterial Culturing.

    Get PDF
    Sepsis is a life-threatening condition mostly caused by a bacterial infection resulting in inflammatory reaction and organ dysfunction if not treated effectively. Rapid identification of the causing bacterial pathogen already in the early stage of bacteremia is therefore vital. Current technologies still rely on time-consuming procedures including bacterial culturing up to 72 h. Our approach is based on ultra-rapid and highly sensitive nanomechanical sensor arrays. In measurements we observe two clearly distinguishable distributions consisting of samples with bacteria and without bacteria respectively. Compressive surface stress indicates the presence of bacteria. For this proof-of-concept, we extracted total RNA from EDTA whole blood samples from patients with blood-culture-confirmed bacteremia, which is the reference standard in diagnostics. We determined the presence or absence of bacterial RNA in the sample through 16S-rRNA hybridization and species-specific probes using nanomechanical sensor arrays. Via both probes, we identified two clinically highly-relevant bacterial species i.e., Escherichia coli and Staphylococcus aureus down to an equivalent of 20 CFU per milliliter EDTA whole blood. The dynamic range of three orders of magnitude covers most clinical cases. We correctly identified all patient samples regarding the presence or absence of bacteria. We envision our technology as an important contribution to early and sensitive sepsis diagnosis directly from blood without requirement for cultivation. This would be a game changer in diagnostics, as no commercial PCR or POCT device currently exists who can do this

    High-Yield Hydrogen Production from Starch and Water by a Synthetic Enzymatic Pathway

    Get PDF
    BACKGROUND: The future hydrogen economy offers a compelling energy vision, but there are four main obstacles: hydrogen production, storage, and distribution, as well as fuel cells. Hydrogen production from inexpensive abundant renewable biomass can produce cheaper hydrogen, decrease reliance on fossil fuels, and achieve zero net greenhouse gas emissions, but current chemical and biological means suffer from low hydrogen yields and/or severe reaction conditions. METHODOLOGY/PRINCIPAL FINDINGS: Here we demonstrate a synthetic enzymatic pathway consisting of 13 enzymes for producing hydrogen from starch and water. The stoichiometric reaction is C(6)H(10)O(5) (l)+7 H(2)O (l)→12 H(2) (g)+6 CO(2) (g). The overall process is spontaneous and unidirectional because of a negative Gibbs free energy and separation of the gaseous products with the aqueous reactants. CONCLUSIONS: Enzymatic hydrogen production from starch and water mediated by 13 enzymes occurred at 30°C as expected, and the hydrogen yields were much higher than the theoretical limit (4 H(2)/glucose) of anaerobic fermentations. SIGNIFICANCE: The unique features, such as mild reaction conditions (30°C and atmospheric pressure), high hydrogen yields, likely low production costs ($∼2/kg H(2)), and a high energy-density carrier starch (14.8 H(2)-based mass%), provide great potential for mobile applications. With technology improvements and integration with fuel cells, this technology also solves the challenges associated with hydrogen storage, distribution, and infrastructure in the hydrogen economy

    Efficacy of thalidomide in a girl with inflammatory calcinosis, a severe complication of juvenile dermatomyositis

    Get PDF
    We report a 14-year-old girl with juvenile dermatomyositis (JDM) complicated by severe inflammatory calcinosis successfully treated with thalidomide. She was diagnosed as JDM when she was 4 years old after a few months of increasing lethargy, muscle pain, muscle weakness, and rash. During three months, clinical manifestations and abnormal laboratory findings were effectively treated with oral prednisolone. However, calcinosis was recognized 18 months after disease onset. Generalized calcinosis rapidly progressed with high fever, multiple skin/subcutaneous inflammatory lesions, and increased level of CRP. Fifty mg/day (1.3 mg/kg day) of oral thalidomide was given for the first four weeks, and then the dose was increased to 75 mg/day. Clinical manifestations subsided, and inflammatory markers had clearly improved. Frequent high fever and local severe pain with calcinosis were suppressed. The levels of FDP-E, IgG, and tryglyceride, which were all elevated before the thalidomide treatment, were gradually returned to the normal range. Over the 18 months of observation up to the present, she has had no inflammatory calcinosis, or needed any hospitalization, although established calcium deposits still remain. Her condition became painless, less extensive and less inflammatory with the CRP level below 3.08 mg/dL. Recent examination by whole-body 18F-FDG-PET-CT over the 15 months of thalidomide treatment demonstrated fewer hot spots around the subcutaneous calcified lesions

    Improving the physician-patient cardiovascular risk dialogue to improve statin adherence

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study was to evaluate the effectiveness of a patient education program developed to facilitate statin adherence.</p> <p>Methods</p> <p>A controlled trial was designed to test the effectiveness of a multifaceted patient education program to facilitate statin adherence. The program included a brief, in-office physician counseling kit followed by patient mailings. The primary end point was adherence to filling statin prescriptions during a 120-day period. Patients new to statins enrolled and completed a survey. Data from a national pharmacy claims database were used to track adherence.</p> <p>Results</p> <p>Patients new to statin therapy exposed to a patient counseling and education program achieved a 12.4 higher average number of statin prescription fill days and were 10% more likely to fill prescriptions for at least 120 days (<it>p </it>= .01).</p> <p>Conclusion</p> <p>Brief in-office counseling on cardiovascular risk followed by patient education mailings can be effective in increasing adherence. Physicians found a one-minute counseling tool and pocket guidelines useful in counseling patients.</p

    Increased Sleep Fragmentation Leads to Impaired Off-Line Consolidation of Motor Memories in Humans

    Get PDF
    A growing literature supports a role for sleep after training in long-term memory consolidation and enhancement. Consequently, interrupted sleep should result in cognitive deficits. Recent evidence from an animal study indeed showed that optimal memory consolidation during sleep requires a certain amount of uninterrupted sleep

    Exposure to Radiofrequency Electromagnetic Fields and Sleep Quality: A Prospective Cohort Study

    Get PDF
    BACKGROUND: There is persistent public concern about sleep disturbances due to radiofrequency electromagnetic field (RF-EMF) exposure. The aim of this prospective cohort study was to investigate whether sleep quality is affected by mobile phone use or by other RF-EMF sources in the everyday environment. METHODS: We conducted a prospective cohort study with 955 study participants aged between 30 and 60 years. Sleep quality and daytime sleepiness was assessed by means of standardized questionnaires in May 2008 (baseline) and May 2009 (follow-up). We also asked about mobile and cordless phone use and asked study participants for consent to obtain their mobile phone connection data from the mobile phone operators. Exposure to environmental RF-EMF was computed for each study participant using a previously developed and validated prediction model. In a nested sample of 119 study participants, RF-EMF exposure was measured in the bedroom and data on sleep behavior was collected by means of actigraphy during two weeks. Data were analyzed using multivariable regression models adjusted for relevant confounders. RESULTS: In the longitudinal analyses neither operator-recorded nor self-reported mobile phone use was associated with sleep disturbances or daytime sleepiness. Also, exposure to environmental RF-EMF did not affect self-reported sleep quality. The results from the longitudinal analyses were confirmed in the nested sleep study with objectively recorded exposure and measured sleep behavior data. CONCLUSIONS: We did not find evidence for adverse effects on sleep quality from RF-EMF exposure in our everyday environmen

    A Unique Regulator Contributes to Quorum Sensing and Virulence in Burkholderia cenocepacia

    Get PDF
    Burkholderia cenocepacia causes chronic and life-threatening respiratory infections in immunocompromized people. The B. cenocepacia N-acyl-homoserine lactone (AHL)-dependent quorum sensing system relies on the production of AHLs by the synthases CepI and CciI while CepR, CciR and CepR2 control expression of many genes important for pathogenesis. Downstream from, and co-transcribed with cepI, lies BCAM1871 encoding a hypothetical protein that was uncharacterized prior to this study. Orthologs of B. cenocepacia BCAM1871 are uniquely found in Burkholderia spp and are conserved in their genomic locations in pathogenic Burkholderia. We observed significant effects on AHL activity upon mutation or overexpression of BCAM1871, although these effects were more subtle than those observed for CepI indicating BCAM1871 acts as an enhancer of AHL activity. Transcription of cepI, cepR and cciIR was significantly reduced in the BCAM1871 mutant. Swimming and swarming motilities as well as transcription of fliC, encoding flagellin, were significantly reduced in the BCAM1871 mutant. Protease activity and transcription of zmpA and zmpB, encoding extracellular zinc metalloproteases, were undetectable in the BCAM1871 mutant indicating a more significant effect of mutating BCAM1871 than cepI. Exogenous addition of OHL restored cepI, cepR and fliC transcription but had no effect on motility, protease activity or zmpA or zmpB transcription suggesting AHL-independent effects. The BCAM1871 mutant exhibited significantly reduced virulence in rat chronic respiratory and nematode infection models. Gene expression and phenotypic assays as well as vertebrate and invertebrate infection models showed that BCAM1871 significantly contributes to pathogenesis in B. cenocepacia

    Microarray analysis of gene expression profiles of cardiac myocytes and fibroblasts after mechanical stress, ionising or ultraviolet radiation

    Get PDF
    BACKGROUND: During excessive pressure or volume overload, cardiac cells are subjected to increased mechanical stress (MS). We set out to investigate how the stress response of cardiac cells to MS can be compared to genotoxic stresses induced by DNA damaging agents. We chose for this purpose to use ionising radiation (IR), which during mediastinal radiotherapy can result in cardiac tissue remodelling and diminished heart function, and ultraviolet radiation (UV) that in contrast to IR induces high concentrations of DNA replication- and transcription-blocking lesions. RESULTS: Cultures enriched for neonatal rat cardiac myocytes (CM) or fibroblasts were subjected to any one of the three stressors. Affymetrix microarrays, analysed with Linear Modelling on Probe Level, were used to determine gene expression patterns at 24 hours after (the start of) treatment. The numbers of differentially expressed genes after UV were considerably higher than after IR or MS. Remarkably, after all three stressors the predominant gene expression response in CM-enriched fractions was up-regulation, while in fibroblasts genes were more frequently down-regulated. To investigate the activation or repression of specific cellular pathways, genes present on the array were assigned to 25 groups, based on their biological function. As an example, in the group of cholesterol biosynthesis a significant proportion of genes was up-regulated in CM-enriched fractions after MS, but down-regulated after IR or UV. CONCLUSION: Gene expression responses after the types of cellular stress investigated (MS, IR or UV) have a high stressor and cell type specificity
    corecore